Design and Analysis of Low Power Phase Locked Loop Based Frequency Synthesizer using Cadence Tool

نویسندگان

  • K. Deepa
  • R. Shankar
چکیده

The CMOS PLL based Frequency Synthesizer is a vital role in Receiver front end Sub component. The main objective of this paper is to design a high frequency of oscillation, less phase noise and power efficient PLL. In general, the PLL contains PFD, Loop Filter, VCO and Frequency Divider. The VCO is a critical component in Phase Locked Loop for low power CMOS designs. Here the Source Coupled VCO is proposed, Even though it consumes more power and area.Power dissipation is one of the main important performance parameter now. The Adaptive Voltage level techniques have applied in obtainableeffortmoderate the power dissipation. In this paper provides over all circuit diagram of PLL block diagram. It is designed in CADENCE VIRTUOSO 180nm Technology. Exploiting CADENCE software schematic diagram of overall PLL is drawn and the power, Frequency of oscillation and noise performance are analyzed. KeywordsSource Coupled VCO, PFD, PLL, CADENCE, Frequency Divider and Charge Pump.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads

This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technolog...

متن کامل

A-New-Closed-form-Mathematical-Approach-to-Achieve Minimum Phase Noise in Frequency Synthesizers

The aim of this paper is to minimize output phase noise for the pure signal synthesis in the frequency synthesizers. For this purpose, first, an exact mathematical model of phase locked loop (PLL) based frequency synthesizer is described and analyzed. Then, an exact closed-form formula in terms of synthesizer bandwidth and total output phase noise is extracted. Based on this formula, the phase ...

متن کامل

An Area Efficient, High Performance, Low Dead Zone, Phase Frequency Detector in 180 nm CMOS Technology for Phase Locked Loop System

The phase frequency detector has been designed for high frequency phase locked loop in 180 nm CMOS Technology with 1.8V supply voltage using CADENCE Spectre tool. A Virtuoso Analog Design Environment and Virtuoso LayoutXL tools of Cadence have used to design and simulate schematic and layout of phase frequency detector respectively. Architecture of phase frequency detector (PFD) has simulated t...

متن کامل

Dual Phase Detector Based Delay Locked Loop for High Speed Applications

In this paper a new architecture for delay locked loops will be presented.  One of problems in phase-frequency detectors (PFD) is static phase offset or reset path delay. The proposed structure decreases the jitter resulted from PFD by switching two PFDs. In this new architecture, a conventional PFD is used before locking of DLL to decrease the amount of phase difference between input and outpu...

متن کامل

Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)

Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015